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Abstract— Convolutional Neural Networks (ConvNets or 

CNNs) are a part of Neural Networks that have been 
exceptionally compelling  in areas of image recognition and 
classification. ConvNets have been effective in recognizing 
faces, objects and traffic signs robots and self driving cars .[1] 

I have attempted to clarify the primary ideas driving 
Convolutional Neural Networks in straightforward terms. I 
clarify the most well-known ConvNet Architectures and I 
clarify profound Learning Libraries that used to fabricate CNN 
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1-INTRODUCTION  

     CNN have been some of the most powerful innovations in 

the field of computer vision. The first year that neural nets 

grew  when Alex Krizhevsky used them in year’s ImageNet 

competition  dropping the classification error record from 26% 

to 15% and he win the competition that was in 2012 ,since 

then, a lot of companies have been using deep learning at their 

services. Such us Facebook uses neural nets for their 

automatic tagging algorithms, Google for their photo search, 

Amazon for their product recommendations, Pinterest, and 

Instagram.[2] CNN have figured out how to sort pictures into 

classes far better than people in some cases (figure  1 ).  It is 

easy to understand especially when we break them down into 

their essential parts[3]. I'll walk you through these essential 

parts and portray them. 

 

 
(figure  1 ) 

2-HOW CNN WORKE 

        CNNs are active at processing data in the form of arrays, 

which makes it ideal for computer vision tasks (Lecun et al., 

2015). CNNs are based on Multilayer Perceptrons (MLP), 

since these consist of fully connected layers, they do not scale 

well with image sizes. Interestingly a CNN tries to  exploit the 

spatially neighborhood relationship in pictures,  by stacking 

the component maps and just interfacing every neuron to a 

little locale of the information volume, this is also called the 

receptive field of the convolutional layer. For each feature 

map, the weight and bias will be shared, this is possible by 

assuming that a feature which is useful to compute at one 

position, is also useful to compute at another spatial 

position.[4][5]. 

      The conv layer receives the raw image data. It uses  its 

filters to recognize the features that it look important . Each 

filter produces a 2 dimensional array of dot products . this 

arrays called an activation map. The activation maps for all 

the filters in one layer are put together into a 3 dimensional 

activation volume. This volume will be the output of the conv 

layer. After the conv layer and ReLU the data passes through a 

max pool layer This cycle (Conv layer, ReLU layer, then 

Maxpool layer) happens several times, depending on the size 

of your CNN. The results from the last conv fed into a fully 

connected layers. Finally, the output of this last fully 

connected layer goes through a softmax layer which converts 

the fully connected layer’s output into a set of class 

probabilities, one foreach class.[4][5].. (figure  2 ) 

 

 

 
figure  2(CNN Architectures) 
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       In the first layers a CNN detects simple features, such as 

edges, then corners. In the later layers, the network starts to 

learn more complex features, which it is seem t to the human 

eye. Activation function CNNs are developed of neurons, 

these have learnable weights and biases and can be 

communicated by the linear function: 

 

y = w .x +b 

 w is the weight, x the input and b is the bias.  
 

3-THE CNN STEPS 

    “the main purpose of Convolution in case of a ConvNet is 

to extract features from the input image. “[16]. 

 

A-Convolutional Layer :- this is the most important part. It 

takes an image as an input and produces a smaller image 

where each pixel are a results from a mathematical 

convolution( process of a filter) with neighboring pixels also 

called kernel .In one convolution layer, the network will apply 

multiply filters [6] . 

     A CNN comprises of multiple convolutional layers. These 

layers scan over the image, using a small, M * M pixel feature 

detector called a filter, and mark the regions of the image that 

align most closely with that filter. It does this by sliding a 

M*M window over the image and computing the dot product 

between that window’s pixel values and the filter’s pixel 

values. A CNN normally consist of several convolutional 

layers, an activation function, pooling layers and lastly the 

classification layer, which is normally afully connected Neural 

Network [5]. 

      “To calculate the match of a feature to a patch of the 

image, simply multiply each pixel in the feature by the value 

of the corresponding pixel in the image. Then add up the 

answers and divide by the total number of pixels in the 

feature(figure  3 ). If both pixels are white (a value of 1) then 

1 * 1 = 1. If both are black, then (-1) * (-1) = 1. Either way, 

every matching pixel results in a 1. Similarly, any mismatch is 

a -1. If all the pixels in a feature match, then adding them up 

and dividing by the total number of pixels gives a 1. Similarly, 

if none of the pixels in a feature match the image patch, then 

the answer is a -1 .The next step is to repeat the convolution 

process in its entirety for each of the other features. The result 

is a set of filtered images, one for each of our filters.”as [3 ] 

 

 
(figure  3 ) Convolutional Layer 

 

B -Introducing Non Linearity (ReLU) :- An additional 

operation called ReLU is used after every Convolution 

operation by replaces all negative pixel values in the feature 

map by zero(figure  4 ).. The purpose of ReLU is to introduce 

non linearity in ConvNet[1], 

 

  
(figure  4 )ReLUs 

 

The activation function is an optional part of the nodes, it 

familiarizes a non-linearity to the output of the node. The 

proposed system uses Recified Linear Unit (ReLU) as the 

activation function, which can be communicated as: 

 

f (x) = max(0;x) 

 

The reason for using the ReLU, is it’s computational 

efficiency, resulting in less training time. It doesn’t have an 

issue with vanishing gradients and has shown to greatly 

accelerate convergence (Glorot et al., 2011). 

 

C - Pooling layer : A key part of Convolutional Neural 

Networks are pooling layers. Typically  applied after the 

convolutional layers. Pooling layers subsample their input. 

The mean of pooling is to apply a max  operation to the result 

of each filter [8]. This layer will be utilized to simplify an 

input by “pooling” neighboring pixels. Regularly the pooling 

function will be the maximum [6]. 

     “Pooling is a way to take large images and lessen them 

down while keeping the most important information in them. 

It consists of stepping a small window across an image and 

taking the maximum value from the window at each step.”  As 

[3] (figure  5 ). 

 

 
(figure  5) Pooling 



 
      Pooling ( subsampling or downsampling) diminishes the 

dimensionality of each feature map but holds the most 

imperative information. Spatial Pooling can be of various 

types: Max, Average, Sum etc. In case of Max Pooling, we 

characterize a spatial neighborhood (for instance, a 2×2 

window) and take the biggest component from the corrected 

feature map within that window. Rather than taking the 

biggest component we could likewise take the average 

(Average Pooling) or the sum of all components in that 

window.. In practice, Max Pooling has been shown to work 

bette[1]. 

     A pooling layer is added between every convolutional 

layer. The function of it, is to reduce the spatial size and that 

will reduce the amount of parameters. This also helps to 

control overfitting [9]. 
 

D- 4-Fully connected layer:- The Fully Connected infers that 

each neuron in the past layer is connected to every neuron on 

the following  layer .’ The output from the convolutional and 

pooling layers represent high-level features of the input 

image.’ [ ].The reason for the Fully Connected layer is to 

utilize these features for characterizing the input image into 

various classes based on the training dataset [1]. 

     Fully connected layers take the high-level filtered images 

and make an interpretation of them into votes Rather than 

regarding inputs as a two-dimensional array, they are dealt 

with as a single list and all treated identically. Each value gets 

its own vote . These votes are communicated as weights, or 

connection strengths, between each value and every 

classification (figure  6 ). [3]. 

 

 
(figure  6 ) Fully connected layer 

E- Backpropagation :  

     The proposed system utilizes the Cross-entropy cost 

capacity to compute the error, which is then utilized by 

backpropagation in order to calculate the gradient for each 

weight. In conclusion gradient descent is used to utilized the 

weights’s changes that needs to be applied during the network, 

before starting over a correct learning rate can be primary 

Choose ,  “a higher learning rate results in faster learning, but 

it might not end up at the ultimate minimal loss. Choosing a 

too low value can result in very slow convergence, while a too 

high value can result in oscillation” (Wilson and Martinez, 

2003). 

Use Backpropagation to ascertain the inclinations of the error 

regarding all weights :- 

 

Error = right answer – actual answer 

 

     The fully connected layer implements classification while 

the loss layer tries to find the error The idea is that the 

network learns by its mistake and then updates the parameters, 

weights and bias, throughout the system. 

 

4- CNN ARCHITECTURES 

 
1-LeNet (1990s to 2012):. (figure 7)   

• The first successful applications of Convolutional 
Networks . 

• developed by  : Yann LeCun in 1990’s. 

• used to read zip codes, digits, etc.[10 ]. 

 

(figure 7) LeNet 

2- AlexNet  (2012) :- 

• The first CNN that work in Computer Vision . 

• developed by Alex Krizhevsky, Ilya Sutskever and 
Geoff Hinton. 

• The AlexNet was submitted to the ImageNet 
ILSVRC challenge in 2012 and significantly 
outperformed the second runner-up (top 5 error of 
16% compared to runner-up with 26% error). 

• It is “very similar architecture to LeNet but was 
deeper, bigger, and featured Convolutional Layers 
stacked on top of each other (previously it was 
common to only have a single CONV layer 
always immediately followed by a POOL layer).” 
[10 ]. 

     AlexNet scaled the insights of LeNet into a much larger 
neural network that could be used to learn much more 
complex objects and object hierarchies. (figure 8)   



 
(figure 8) AlexNet 

3- ZF Net (2013) – 

• developed by The ILSVRC 2013 winner was a 
Convolutional Network from Matthew Zeiler and 
Rob Fergus. 

• It known as the ZFNet (short for Zeiler & Fergus 
Net).  

• “It was an improvement on AlexNet by tweaking 
the architecture hyperparameters, in particular by 
expanding the size of the middle convolutional 
layers and making the stride and filter size on the 
first layer smaller.” [10 ]. (figure 9). 

 

(figure 9) ZF Net 

4- GoogLeNet (2014):- 

• developed by Google The ILSVRC 2014 winner was 

a Convolutional Network from Szegedy et al.  

• “ Its main contribution was the development of an 

Inception Module that dramatically reduced the 

number of parameters in the network (4M, compared 

to AlexNet with 60M). Additionally, this paper uses 

Average Pooling instead of Fully Connected layers at 

the top of the ConvNet(figure10), eliminating a large 

amount of parameters that do not seem to matter 

much. There are also several followup versions to the 

GoogLeNet, most recently Inception-v4.” [10 ]. 

(figure 11). 

 
 

(figure 10) Inception Module GoogLeNet 

 

 
(figure 11) GoogLeNet 

 

5- VGGNet (2014) –  

• developed by The runner-up in ILSVRC 2014 was 
the network from Karen Simonyan and Andrew 
Zisserman  

• It known as the VGGNet.  

• “Its main contribution was in showing that the 
depth of the network is a critical component for 
good performance. Their final best network 
contains 16 CONV/FC layers and, appealingly, 
features an extremely homogeneous architecture 
that only performs 3x3 convolutions and 2x2 
pooling from the beginning to the end. Their 
pretrained model is available for plug and play use 
in Caffe (figure 12). A downside of the VGGNet 
is that it is more expensive to evaluate and uses a 
lot more memory and parameters (140M). Most of 
these parameters are in the first fully connected 
layer, and it was since found that these FC layers 
can be removed with no performance downgrade, 
significantly reducing the number of necessary 
parameters.” [10 ]. 

 

 

(figure 12) VGGNet 

 

 



6- ResNets (2015) – The revolution then came in 
December 2015, at about the same time as Inception 
v3. ResNet have a simple ideas: feed the output of two 
successive convolutional layer AND also bypass the 
input to the next layers. 

• developed by Kaiming He et al. was the winner of 

ILSVRC 2015.  

• “It features special skip connections and a heavy use 

of batch normalization. The architecture is also 

missing fully connected layers at the end of the 

network. The reader is also referred to Kaiming’s 

presentation (video, slides), and some recent 

experiments that reproduce these networks in Torch. 

ResNets are currently by far state of the art 

Convolutional Neural Network models and are the 

default choice for using ConvNets in practice (as of 

May 10, 2016). In particular, also see more recent 

developments that tweak the original architecture 

from Kaiming He et al. Identity Mappings in Deep 

Residual Networks (published March 2016).” [10 ]. 

(figure 13) 

 

 
(figure 13) ResNets 

 

 

In a traditional network the activation at a layer is know as 

follows: 

 

     Y=f(x) 

 

Where f(x) is our convolution, matrix multiplication. At each 

layer the ResNet implements: 

 

Y=f(x)+x 

 

It allows the slope to pass backwards directly. By amass these 

layers, the gradient could skip over all the intermediate layers 

and reach the bottom without being minimize (figure 14). 

 

 
(figure 14) ResNets 

 

7- DenseNet (August 2016) –“ Recently published by Gao 

Huang (and others), the Densely Connected Convolutional 

Network has each layer directly connected to every other layer 

in a feed-forward fashion. The DenseNet has been shown to 

obtain significant improvements over previous state-of-the-art 

architectures on five highly competitive object recognition 

benchmark tasks. “[10 ]. (figure 15)   

      the DenseNet relies on stacking of layers. Mathematically 

this looks like: 

y = f(x,x-1,x-2…x-n) 

 
(figure 15) DenseNet 

5-DEEP LEARNING LIBRARIES  

A-  Caffe  :  is a deep learning framework.  

• developed by the Berkeley Vision and Learning 

Center (BVLC) and by community contributors. 

• Google's  DeepDream is based on Caffe Framework. 

it is a BSD-licensed C++ library with Python 

Interface.  

• open-source [ 11][12]. 

 

B- Deeplearning4j :  is the first commercial-grade. 

• distributed deep-learning library written for Java and 

Scala. 

• It is designed to be used in business environments, 

rather than as a research tool. 

• open-source [ 11][12]. 

C - Theano: is a low-level library that specializes in efficient 

computation.  

• Creator: Université de Montréal 

• Open source 

• Interface: Python [ 11][12]. 

 

D -TensorFlow :is another low-level library that is less mature 

than Theano.  it's supported by Google.  

• Creator: Google Brain Team 

• Open source 

• Interface: Python,  C/C++ [ 11][12]. 

 

E- Torch : is a scientific computing framework with wide 

support for machine learning algorithms. It is easy to use and 

efficient, fast scripting language, LuaJIT, and an underlying 

C/CUDA implementation. 

• Interface : Lua programming language. 

• Open source . [ 11][12]. 
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F- Keras : a high-level neural networks library, written in 

Python and capable of running on top of 

either TensorFlow or Theano. It's minimalistic, modular, and 

awesome for rapid experimentation. It is the best place to 

start for beginners.[17] 

This is my favorite Python library for deep learning . 

 

 

G - MXNET : s another high-level library similar to Keras. It 

offers bindings for multiple languages and support for 

distributed computing. 

• Creator: Distributed (Deep) Machine Learning 

Community 

• Open source: Yes 

• Interface: C++, Python, Julia, Matlab, JavaScript, R, 

Scala. [ 12][13]. 

 

6 -Conclusion 

      Convolutional Neural Networks (ConvNets or CNNs) are 

a part of Neural Networks that have been exceptionally 

compelling  in areas of image recognition and classification. 

CNNs give the best execution in image recognition problems 

and  even beat people in specific cases . The viability  of 

convolutional nets  in image is one of the principle reasons 

why the world has woken up to profound learning. They are 

powering major advances in machine vision, hey are 

controlling real advances in machine vision, which has clear 

applications for treatments for the visually impaired , robotics 

,and self-driving cars.  I have attempted to clarify the primary 

ideas driving Convolutional Neural Networks in 

straightforward terms. I explain the most common   ConvNet 

Architectures and I explain deep Learning Libraries that used 

to build CNN .  

 

 

 

 

 

7- Future work 

 

      I will used CNN to build my parking lots classification 

model to classify the empty spot and count them. I will used 

Resnet and Keras and TensorFlow to build my model . 
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