
CONVOLUTIONAL NEURAL NETWORKS

Assit.Lec Rasha Amer Kadhim Al- Khalissi

MS.c.. Computer science
College of Agriculture

Animal Production Department

Diyala University

Email : rashaakm@agriculture.uodiyala.edu.iq

Abstract— Convolutional Neural Networks (ConvNets or

CNNs) are a part of Neural Networks that have been
exceptionally compelling in areas of image recognition and
classification. ConvNets have been effective in recognizing
faces, objects and traffic signs robots and self driving cars .[1]

I have attempted to clarify the primary ideas driving
Convolutional Neural Networks in straightforward terms. I
clarify the most well-known ConvNet Architectures and I
clarify profound Learning Libraries that used to fabricate CNN

Keywords— Convolutional Neural Networks; ConvNets ; CNN;

classification; image recognition ; Layer; ReLU; Pooling;

Backpropagation; LeNet ; AlexNet ; ZF Net ;GoogLeNet; VGGNet;

ResNets; DenseNet; Caffe; Deeplearning4j; Theano; TensorFlow;

Torch; Keras; MXNET.

1-INTRODUCTION

 CNN have been some of the most powerful innovations in

the field of computer vision. The first year that neural nets

grew when Alex Krizhevsky used them in year’s ImageNet

competition dropping the classification error record from 26%

to 15% and he win the competition that was in 2012 ,since

then, a lot of companies have been using deep learning at their

services. Such us Facebook uses neural nets for their

automatic tagging algorithms, Google for their photo search,

Amazon for their product recommendations, Pinterest, and

Instagram.[2] CNN have figured out how to sort pictures into

classes far better than people in some cases (figure 1). It is

easy to understand especially when we break them down into

their essential parts[3]. I'll walk you through these essential

parts and portray them.

(figure 1)

2-HOW CNN WORKE

 CNNs are active at processing data in the form of arrays,

which makes it ideal for computer vision tasks (Lecun et al.,

2015). CNNs are based on Multilayer Perceptrons (MLP),

since these consist of fully connected layers, they do not scale

well with image sizes. Interestingly a CNN tries to exploit the

spatially neighborhood relationship in pictures, by stacking

the component maps and just interfacing every neuron to a

little locale of the information volume, this is also called the

receptive field of the convolutional layer. For each feature

map, the weight and bias will be shared, this is possible by

assuming that a feature which is useful to compute at one

position, is also useful to compute at another spatial

position.[4][5].

 The conv layer receives the raw image data. It uses its

filters to recognize the features that it look important . Each

filter produces a 2 dimensional array of dot products . this

arrays called an activation map. The activation maps for all

the filters in one layer are put together into a 3 dimensional

activation volume. This volume will be the output of the conv

layer. After the conv layer and ReLU the data passes through a

max pool layer This cycle (Conv layer, ReLU layer, then

Maxpool layer) happens several times, depending on the size

of your CNN. The results from the last conv fed into a fully

connected layers. Finally, the output of this last fully

connected layer goes through a softmax layer which converts

the fully connected layer’s output into a set of class

probabilities, one foreach class.[4][5].. (figure 2)

figure 2(CNN Architectures)

mailto:rashaakm@agriculture.uodiyala.edu.iq
http://caffe.berkeleyvision.org/
https://en.wikipedia.org/wiki/Deeplearning4j
https://en.wikipedia.org/wiki/Theano_(software)
http://www.tensorflow.org/
https://en.wikipedia.org/wiki/Torch_(machine_learning)

 In the first layers a CNN detects simple features, such as

edges, then corners. In the later layers, the network starts to

learn more complex features, which it is seem t to the human

eye. Activation function CNNs are developed of neurons,

these have learnable weights and biases and can be

communicated by the linear function:

y = w .x +b

 w is the weight, x the input and b is the bias.

3-THE CNN STEPS

 “the main purpose of Convolution in case of a ConvNet is

to extract features from the input image. “[16].

A-Convolutional Layer :- this is the most important part. It

takes an image as an input and produces a smaller image

where each pixel are a results from a mathematical

convolution(process of a filter) with neighboring pixels also

called kernel .In one convolution layer, the network will apply

multiply filters [6] .

 A CNN comprises of multiple convolutional layers. These

layers scan over the image, using a small, M * M pixel feature

detector called a filter, and mark the regions of the image that

align most closely with that filter. It does this by sliding a

M*M window over the image and computing the dot product

between that window’s pixel values and the filter’s pixel

values. A CNN normally consist of several convolutional

layers, an activation function, pooling layers and lastly the

classification layer, which is normally afully connected Neural

Network [5].

 “To calculate the match of a feature to a patch of the

image, simply multiply each pixel in the feature by the value

of the corresponding pixel in the image. Then add up the

answers and divide by the total number of pixels in the

feature(figure 3). If both pixels are white (a value of 1) then

1 * 1 = 1. If both are black, then (-1) * (-1) = 1. Either way,

every matching pixel results in a 1. Similarly, any mismatch is

a -1. If all the pixels in a feature match, then adding them up

and dividing by the total number of pixels gives a 1. Similarly,

if none of the pixels in a feature match the image patch, then

the answer is a -1 .The next step is to repeat the convolution

process in its entirety for each of the other features. The result

is a set of filtered images, one for each of our filters.”as [3]

(figure 3) Convolutional Layer

B -Introducing Non Linearity (ReLU) :- An additional

operation called ReLU is used after every Convolution

operation by replaces all negative pixel values in the feature

map by zero(figure 4).. The purpose of ReLU is to introduce

non linearity in ConvNet[1],

(figure 4)ReLUs

The activation function is an optional part of the nodes, it

familiarizes a non-linearity to the output of the node. The

proposed system uses Recified Linear Unit (ReLU) as the

activation function, which can be communicated as:

f (x) = max(0;x)

The reason for using the ReLU, is it’s computational

efficiency, resulting in less training time. It doesn’t have an

issue with vanishing gradients and has shown to greatly

accelerate convergence (Glorot et al., 2011).

C - Pooling layer : A key part of Convolutional Neural

Networks are pooling layers. Typically applied after the

convolutional layers. Pooling layers subsample their input.

The mean of pooling is to apply a max operation to the result

of each filter [8]. This layer will be utilized to simplify an

input by “pooling” neighboring pixels. Regularly the pooling

function will be the maximum [6].

 “Pooling is a way to take large images and lessen them

down while keeping the most important information in them.

It consists of stepping a small window across an image and

taking the maximum value from the window at each step.” As

[3] (figure 5).

(figure 5) Pooling

 Pooling (subsampling or downsampling) diminishes the

dimensionality of each feature map but holds the most

imperative information. Spatial Pooling can be of various

types: Max, Average, Sum etc. In case of Max Pooling, we

characterize a spatial neighborhood (for instance, a 2×2

window) and take the biggest component from the corrected

feature map within that window. Rather than taking the

biggest component we could likewise take the average

(Average Pooling) or the sum of all components in that

window.. In practice, Max Pooling has been shown to work

bette[1].

 A pooling layer is added between every convolutional

layer. The function of it, is to reduce the spatial size and that

will reduce the amount of parameters. This also helps to

control overfitting [9].

D- 4-Fully connected layer:- The Fully Connected infers that

each neuron in the past layer is connected to every neuron on

the following layer .’ The output from the convolutional and

pooling layers represent high-level features of the input

image.’ [].The reason for the Fully Connected layer is to

utilize these features for characterizing the input image into

various classes based on the training dataset [1].

 Fully connected layers take the high-level filtered images

and make an interpretation of them into votes Rather than

regarding inputs as a two-dimensional array, they are dealt

with as a single list and all treated identically. Each value gets

its own vote . These votes are communicated as weights, or

connection strengths, between each value and every

classification (figure 6). [3].

(figure 6) Fully connected layer

E- Backpropagation :

 The proposed system utilizes the Cross-entropy cost

capacity to compute the error, which is then utilized by

backpropagation in order to calculate the gradient for each

weight. In conclusion gradient descent is used to utilized the

weights’s changes that needs to be applied during the network,

before starting over a correct learning rate can be primary

Choose , “a higher learning rate results in faster learning, but

it might not end up at the ultimate minimal loss. Choosing a

too low value can result in very slow convergence, while a too

high value can result in oscillation” (Wilson and Martinez,

2003).

Use Backpropagation to ascertain the inclinations of the error

regarding all weights :-

Error = right answer – actual answer

 The fully connected layer implements classification while

the loss layer tries to find the error The idea is that the

network learns by its mistake and then updates the parameters,

weights and bias, throughout the system.

4- CNN ARCHITECTURES

1-LeNet (1990s to 2012):. (figure 7)

• The first successful applications of Convolutional
Networks .

• developed by : Yann LeCun in 1990’s.

• used to read zip codes, digits, etc.[10].

(figure 7) LeNet

2- AlexNet (2012) :-

• The first CNN that work in Computer Vision .

• developed by Alex Krizhevsky, Ilya Sutskever and
Geoff Hinton.

• The AlexNet was submitted to the ImageNet
ILSVRC challenge in 2012 and significantly
outperformed the second runner-up (top 5 error of
16% compared to runner-up with 26% error).

• It is “very similar architecture to LeNet but was
deeper, bigger, and featured Convolutional Layers
stacked on top of each other (previously it was
common to only have a single CONV layer
always immediately followed by a POOL layer).”
[10].

 AlexNet scaled the insights of LeNet into a much larger
neural network that could be used to learn much more
complex objects and object hierarchies. (figure 8)

(figure 8) AlexNet

3- ZF Net (2013) –

• developed by The ILSVRC 2013 winner was a
Convolutional Network from Matthew Zeiler and
Rob Fergus.

• It known as the ZFNet (short for Zeiler & Fergus
Net).

• “It was an improvement on AlexNet by tweaking
the architecture hyperparameters, in particular by
expanding the size of the middle convolutional
layers and making the stride and filter size on the
first layer smaller.” [10]. (figure 9).

(figure 9) ZF Net

4- GoogLeNet (2014):-

• developed by Google The ILSVRC 2014 winner was

a Convolutional Network from Szegedy et al.

• “ Its main contribution was the development of an

Inception Module that dramatically reduced the

number of parameters in the network (4M, compared

to AlexNet with 60M). Additionally, this paper uses

Average Pooling instead of Fully Connected layers at

the top of the ConvNet(figure10), eliminating a large

amount of parameters that do not seem to matter

much. There are also several followup versions to the

GoogLeNet, most recently Inception-v4.” [10].

(figure 11).

(figure 10) Inception Module GoogLeNet

(figure 11) GoogLeNet

5- VGGNet (2014) –

• developed by The runner-up in ILSVRC 2014 was
the network from Karen Simonyan and Andrew
Zisserman

• It known as the VGGNet.

• “Its main contribution was in showing that the
depth of the network is a critical component for
good performance. Their final best network
contains 16 CONV/FC layers and, appealingly,
features an extremely homogeneous architecture
that only performs 3x3 convolutions and 2x2
pooling from the beginning to the end. Their
pretrained model is available for plug and play use
in Caffe (figure 12). A downside of the VGGNet
is that it is more expensive to evaluate and uses a
lot more memory and parameters (140M). Most of
these parameters are in the first fully connected
layer, and it was since found that these FC layers
can be removed with no performance downgrade,
significantly reducing the number of necessary
parameters.” [10].

(figure 12) VGGNet

6- ResNets (2015) – The revolution then came in
December 2015, at about the same time as Inception
v3. ResNet have a simple ideas: feed the output of two
successive convolutional layer AND also bypass the
input to the next layers.

• developed by Kaiming He et al. was the winner of

ILSVRC 2015.

• “It features special skip connections and a heavy use

of batch normalization. The architecture is also

missing fully connected layers at the end of the

network. The reader is also referred to Kaiming’s

presentation (video, slides), and some recent

experiments that reproduce these networks in Torch.

ResNets are currently by far state of the art

Convolutional Neural Network models and are the

default choice for using ConvNets in practice (as of

May 10, 2016). In particular, also see more recent

developments that tweak the original architecture

from Kaiming He et al. Identity Mappings in Deep

Residual Networks (published March 2016).” [10].

(figure 13)

(figure 13) ResNets

In a traditional network the activation at a layer is know as

follows:

 Y=f(x)

Where f(x) is our convolution, matrix multiplication. At each

layer the ResNet implements:

Y=f(x)+x

It allows the slope to pass backwards directly. By amass these

layers, the gradient could skip over all the intermediate layers

and reach the bottom without being minimize (figure 14).

(figure 14) ResNets

7- DenseNet (August 2016) –“ Recently published by Gao

Huang (and others), the Densely Connected Convolutional

Network has each layer directly connected to every other layer

in a feed-forward fashion. The DenseNet has been shown to

obtain significant improvements over previous state-of-the-art

architectures on five highly competitive object recognition

benchmark tasks. “[10]. (figure 15)

 the DenseNet relies on stacking of layers. Mathematically

this looks like:

y = f(x,x-1,x-2…x-n)

(figure 15) DenseNet

5-DEEP LEARNING LIBRARIES

A- Caffe : is a deep learning framework.

• developed by the Berkeley Vision and Learning

Center (BVLC) and by community contributors.

• Google's DeepDream is based on Caffe Framework.

it is a BSD-licensed C++ library with Python

Interface.

• open-source [11][12].

B- Deeplearning4j : is the first commercial-grade.

• distributed deep-learning library written for Java and

Scala.

• It is designed to be used in business environments,

rather than as a research tool.

• open-source [11][12].

C - Theano: is a low-level library that specializes in efficient

computation.

• Creator: Université de Montréal

• Open source

• Interface: Python [11][12].

D -TensorFlow :is another low-level library that is less mature

than Theano. it's supported by Google.

• Creator: Google Brain Team

• Open source

• Interface: Python, C/C++ [11][12].

E- Torch : is a scientific computing framework with wide

support for machine learning algorithms. It is easy to use and

efficient, fast scripting language, LuaJIT, and an underlying

C/CUDA implementation.

• Interface : Lua programming language.

• Open source . [11][12].

https://arxiv.org/abs/1512.03385
http://www.teglor.com/b/deep-learning-libraries-language-cm569
http://caffe.berkeleyvision.org/
https://en.wikipedia.org/wiki/Deeplearning4j
https://en.wikipedia.org/wiki/Theano_(software)
http://www.tensorflow.org/
https://en.wikipedia.org/wiki/Torch_(machine_learning)

F- Keras : a high-level neural networks library, written in

Python and capable of running on top of

either TensorFlow or Theano. It's minimalistic, modular, and

awesome for rapid experimentation. It is the best place to

start for beginners.[17]

This is my favorite Python library for deep learning .

G - MXNET : s another high-level library similar to Keras. It

offers bindings for multiple languages and support for

distributed computing.

• Creator: Distributed (Deep) Machine Learning

Community

• Open source: Yes

• Interface: C++, Python, Julia, Matlab, JavaScript, R,

Scala. [12][13].

6 -Conclusion

 Convolutional Neural Networks (ConvNets or CNNs) are

a part of Neural Networks that have been exceptionally

compelling in areas of image recognition and classification.

CNNs give the best execution in image recognition problems

and even beat people in specific cases . The viability of

convolutional nets in image is one of the principle reasons

why the world has woken up to profound learning. They are

powering major advances in machine vision, hey are

controlling real advances in machine vision, which has clear

applications for treatments for the visually impaired , robotics

,and self-driving cars. I have attempted to clarify the primary

ideas driving Convolutional Neural Networks in

straightforward terms. I explain the most common ConvNet

Architectures and I explain deep Learning Libraries that used

to build CNN .

7- Future work

 I will used CNN to build my parking lots classification

model to classify the empty spot and count them. I will used

Resnet and Keras and TensorFlow to build my model .

REFERENCES

[1] https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

[2] https://adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-
Convolutional-Neural-Networks/

[3] https://brohrer.github.io/how_convolutional_neural_networks_work.htm
l

[4] http://publications.idiap.ch/downloads/papers/2017/Pinheiro_THESIS_2
017.pdf

[5] http://vbn.aau.dk/files/244496579/Parking.pdf

[6] https://dsotb.quora.com/Deep-learning-with-Keras-convolutional-
neural-networks-demystified#QYgbJ

[7] http://vbn.aau.dk/files/244496579/Parking.pdf

[8] http://www.wildml.com/2015/11/understanding-convolutional-neural-
networks-for-nlp/

[9] http://cs231n.github.io/convolutional-networks/#pool

[10] http://cs231n.github.io/convolutional-networks/

[11] http://www.teglor.com/b/deep-learning-libraries-language-cm569/

[12] https://elitedatascience.com/python-deep-learning-libraries

[13] http://blog.revolutionanalytics.com/2016/08/deep-
learning-part-1.html

[14] https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-
Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/

[15] https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-
Learning-Papers-You-Need-To-Know-About.html

[16] http://www.kdnuggets.com/2016/11/intuitive-explanation-
convolutional-neural-networks.html

[17] https://keras.io/

https://github.com/tensorflow/tensorflow
https://github.com/Theano/Theano
http://www.tensorflow.org/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://brohrer.github.io/how_convolutional_neural_networks_work.html
https://brohrer.github.io/how_convolutional_neural_networks_work.html
http://publications.idiap.ch/downloads/papers/2017/Pinheiro_THESIS_2017.pdf
http://publications.idiap.ch/downloads/papers/2017/Pinheiro_THESIS_2017.pdf
http://vbn.aau.dk/files/244496579/Parking.pdf
https://dsotb.quora.com/Deep-learning-with-Keras-convolutional-neural-networks-demystified#QYgbJ
https://dsotb.quora.com/Deep-learning-with-Keras-convolutional-neural-networks-demystified#QYgbJ
http://vbn.aau.dk/files/244496579/Parking.pdf
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://cs231n.github.io/convolutional-networks/#pool
http://cs231n.github.io/convolutional-networks/
http://www.teglor.com/b/deep-learning-libraries-language-cm569/
https://elitedatascience.com/python-deep-learning-libraries
http://blog.revolutionanalytics.com/2016/08/deep-learning-part-1.html
http://blog.revolutionanalytics.com/2016/08/deep-learning-part-1.html
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/
https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
http://www.kdnuggets.com/2016/11/intuitive-explanation-convolutional-neural-networks.html
http://www.kdnuggets.com/2016/11/intuitive-explanation-convolutional-neural-networks.html
https://keras.io/

